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Two-Parameter, Arbitrary Order, 
Exponential Approximations for Stiff Equations 

By Byron L. Ehle and Zdenek Picel 

Abstract. A two-parameter family of approximations to the exponential function is 

considered. Constraints on the parameters are determined which guarantee the approxi- 

mations are A-acceptable. The suitability of these approximations for 2-point A-stable 

exponential fitting is established. Several numerical methods, which produce these 

approximations when solving y' = Xy, are presented. 

1. Introduction. Considerable attention has recently been directed toward the 

numerical solution of stiff differential equations. It is common practice to require 

that a method designed to handle such equations satisfy a condition such as 

(1.1) lyn+11ynI < 1 

as n ~o when solving the initial-value problem 

(1.2) y' = Xy, y(O) = yo, 

using any fixed step size h > 0 and any X such that IArg(- X)I < a < iT/2. In (1.1), 

Yn is the computed solution of (1.2) at xn = nh. Methods satisfying (1.1) with a = 

7r/2 were first considered by Dahlquist [4] and are referred to as being A-stable. Be- 
cause many methods reduce to a computation of the form 

(1.3) Yk(n+1) =EQJ)ykf = [E(Xh)] n + lyO, 

for some k > 1 when solving (1.2), much effort has been devoted to determining if 

particular expressions for E(z) are bounded by 1 for all z, Re(z) < 0. Approximations 
to the exponential satisfying this condition are said to be A-acceptable. It has been 

shown that all the diagonal and first and second subdiagonal Pade' approximations 
to the exponential are A-acceptable [5], [15] and a number of methods have been pro- 

posed which reduce to these particular approximations [5], [10], [13], when solving 

(1.2). Recently, Watts [14] has proposed several methods which are A-stable and re- 

duce to the form of (1.3) when solving (1.2). Many of the exponential approximations 

he considers are, however, not Pade approximations. In this paper, we consider a class 

of functions, constructed from Pade approximations to the exponential, and depending 

on two parameters. Denoting the unique Pade' approximation to the exponential with 

numerator of degree k and denominator of degree j by 
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( 1 .4) Pi, k (Z) = Nj, k (z)/Dj, k (z), 

these approximations take the form 

Pn, 2(Z; Al, 2) 
Nn2 Z 1 12 

s 
V~~~n,2(Z; 91, 2) 

(1.5) 
(1 - - 

?2)Nn,n-2 + PlNn,n-? + 12Nn,n 

(1 A - 
2)Dn,n-2 + ?lDn,n-1 + 2Dn,n 

Since, for all j, k > 0, Pj k(Z) - exp(z) = O(zj+k+ 1), we have at once that 

Pn,2(Z; A1, 12) 
- exp(z) = (1 -pi -_ 2)0(Z2n'1) 

when n > 2, provided p, + p2 = 1. Thus, Pn 2(Z;Al1 ,U2) represents a family of 

approximations to the exponential of arbitrarily high order. This family of approxi- 

mations is the natural generalization of the families previously considered by Ehle [7]. 

It is easily verifiled that several of the exponential approximations of Watts [14] are 

given by appropriate choice of the parameters. 

In Section 2, we consider the A-acceptability of such approximations. In particu- 

lar, we show that if p > 0, "2 > 0 and p, + "2 < 1 then Pn,2(Z; A,1 12) is A- 

acceptable. Section 3 is devoted to showing that the parameters A,l p2 may be 

chosen so that PnT2(Z; Al1 ,2) and eZ are equal for any two real values of z < 0 and 

that all approximations of this type are also A-acceptable. Examples of three well- 

known classes of methods which give approximations of the form (1.5) are given in 

Section 4. Finally, in an Appendix, we present a number of properties and results 

that are used in the proofs of Sections 2 and 3 of the paper. Results given in the 

Appendix will be denoted by A.1, A.2, etc. 

2. Constraints for A-Acceptability of Pn 2(Z; A 1, ,42). To establish the A- 

acceptability of Pn,2 we shall use the same strategy employed in [5] and [7]. Thus, 

we determine when Pn12 is bounded by 1 on the imaginary axis and also as Re(- z) -+ 

oo. Next, we determine when the denominator has no zeros in the left half-plane so 

that the Maximum Modulus Theorem may be applied to establish boundedness. 

LEMMA 2.1. For all n > 2, z = iy, y real, 

IDn,2(Z; A 1 ,2)I - INn,2(z; t1l I2)12 > 0, 

provided 
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Proof. From the definition of VD,2 and Nn,2 and the fact that An,n(iy)l = 

IDn, n(iy)I for y real, we have 

IVn, 12 - IN, 212 

= (1 - Al, - 2 { ,n2 2 n-2 1 } ? {D,n1 - Wnn-1 } 

+ (1 PI P2)P1 fDn,n-2Dn,n-l Nn,n-2Nn,n-1 

+ Dn,n-lDn,n-2 -Nn,n-1 n,n-2 

+ (1 - 1 - 2)2 {Dn,n-2Dn,n-Nn,n-2Nn,n n,nn,n-2 - Nn,nNn,n-2 } 

+ 9112 fDn,n-IDn,n - Nn,n-lNn,n n,n n,n-l-Nn,n n,n-11} 

The first two terms may be simplified using Lemma A.2. The third, fourth, and fifth 

terms can be simplified using property (A) and Lemmas A.3, A.5, and A.4, respectively, 

and the result follows at once. 
LEMMA 2.2. For all n ? 2 

Lim Nn,2(Z; 1t '2) 1< 
Re(-z)-+- Dn, 2 (Z;~ Al2) 

provided 

p2 < 
2(2n - 1) (1 - - p2) + 2 ?1 + 2 

when P2 $ 0 and for all p, otherwise. 

Proof The result follows at once from Eqs. (A.1). 

Turning to the problem of establishing that Pn,2(z; 1 P2) is analytic, we con- 

sider the region R = {(p1, P2)1tl >- 0, P2 > 0, PA + P2 < 1 }. Noting that, if 

(1' P2) satisfy the constraint of Lemma 2.1, then the constraint of Lemma 2.2 is also 

satisfied, it is easily verified that IPn 2(iy; iii, 2)I < 1 for (p1 P 2) E R and y real. 

We also note that, if ,' + ,2 1 or if ,2 -0, then Pn,2(Z; /1 ,12) reduces to the 

A-acceptable approximations studied in [7]. An attempt was made to show that 

Dn,2(Z; P1 p 2) had no zeros in the left half-plane for (Al P 2) E R by observing that 

n,2(Z; l p2) = Dn 2 (z)Z -1 ) D n2(Z) 

z2(2 -1 

+.(2n1 D ,-2 (Z) 
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and applying a generalization of the result of Marden employed in [7]. Using this 

approach, it is only possible to show that Dn 2(Z; ' 12) has no zeros in the left half- 

plane when (ji1 , 2) E Rn* where R * is R minus a region bounded by a parabola which 

opens to the left and crosses the P2 axis at P2 = 0 and P2 = 2(n - 1)/(2n - 1). Since 

the proof given below allows us to show that, for any n, Dn 2(Z; ' 12) has no zeros 

in the left half-plane when (p1 P2) E R, we give none of the details of the above result 

but mention it only for completeness. 
Several preliminary results will be necessary. 
LEMMA 2.3. Let (x, y) be any point such that 0 S x, y S 1 and x + y S 1. 

Then there exists a, f satisfying 0 S a, f S 1 and such that a = y, (1 - a)3 = x. 

Proof Assume x + y = C S 1. Then, y = a,x= (1 - a) gives ,B = 

(C- a)/(I - a) S 1. 

LEMMA 2.4. Dn,2(Z; Pl, I2) can be written in the form 

(1 -a) [(1 - O)Dn,n2 + Dn,ni I + o?Dn,n2, 

where 0 ?< a, S 1 when (1 I2) E R. 
Proof Lemma 2.3. 
THEOREM 2. 1. For all n > 2, Vn 2(Z; h1 , 2) has no zeros in the left half-plane when 

("1 I2) E R. 
Proof In [7], it was shown, when 112 = 0 or when p, + ?2 = 1, that Dn,2 has 

no zeros in the left half-plane. Assume that, for some (p*, p*) E R, Dn,2 has zeros 

in the left half-plane. Then, by the root locus property [11], there is a (P4* 112) E 

R, P12 $ 0, such that Dn, 2 has a pure imaginary root, yi. By Lemma 2.4, we may 
write 

(2.1) (1 - 0)Dn,n-2(yi) + 3Dn,n-1(7i) a 0 
Dn,n(i) a-I 

Now, since a/(a - 1) is real, it follows that the imaginary part on the left in (2.1) 

must be zero. We shall now show that this is not possible by showing that 

(2.2) Im([(1 - O)Dn,n-2 + WDn,nl] Dn,n) # 0 

for any z = iy. We note that (2.2) is equivalent to 

1_ 
I {[(1 -O)D, n-2 + 

-Dn, 
n -]n, [(1 

- 
)K' n,n-2 + 

1Dnn -1]Dn, } 

which, by property (A), can be written as 

(2-3) 2i [Dn,n-2Nn,n -Nn-2,nDn,n ] + [Dn,n-iNnn - Nn-i nDn,n] 
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Now, applying Lemma A.6 and Theorem A.1, we see that, for any real y > 0, the 
value of (2.3) is negative and, for any y < 0, it is positive. Since y = 0 is not a zero 
of DnV,2 we have the contradiction which establishes that Dfn,2 has no zeros in the 
left half-plane for (, ii) E R. 

THEOREM 2.2. For all n > 2, Pn 2(Z; 1, ,1 2) is an A-acceptable approximation 
to the exponential provided (Al, jI2) E R. 

Proof The result follows from Lemmas 2.1, 2.2, Theorem 2.1 and the Maximum 
Modulus Theorem. 

We note that R is not the complete region of A-acceptability of Pn,2, but it is 
probably the region of greatest interest as will be shown by the results of the next 
section. 

3. Exponential Approximation Using Pn,2. The purpose of this section is to 
establish the following result. 

THEOREM 3.1. For any n > 2 and any two ql, q2 < 0, there exists (,21, U2)E 
RI, the regnn- of k j 'f D'n; r- 

A A q1 A A q 
Pn,2(q1; PI1, p 2) = e and Pn,2(q2 i 1 

i12) =e 

Proof: Observing that, with P2 = 0, Pn,2 reduces to the approximation 
Pn,n-2(z; pl) of [7] and, for p, = 1 - P2, Pn,2 reduces to the approximation 
Pn,n-l(Z; P2) of [7], we have by Theorem 5.1 of [7] that, for a given q1 < 0, there 
exist 0 < 14, 1* < 1 satisfying the condition 

(3 .1 ) Pn,2 (q l; 4 , 0) = e q, Pn2( ;1-2 2)=eql. 

Now consider any point on the line segment connecting (1*, 0) and (1 - 14, 14). 
Representing this line by "2 = A *P I + B*, we have that 

(3.2) Pn,2(ql;pl,A ? )l +B = (a?+ap1)/(,y+6 j), 

where a, B, y, and 6 are constants determined by ql. An expression of this form 
is continuous if y + 6S,l 0 0 and strictly increasing, strictlydecreasing, or constant. 
Theorem 2.1 establishes the continuity of (3.2), and then Eqs. (3.1) may be 
used to show that the value of (3.2) is, in fact, constant. 

Now consider Pn, 2 (q2; 1 , A *p1 + B*) eq2 for ? = q2 = q1 - From the 
results of [7], we have that 

Pn,2(q2; P1*, ) - eq2 and Pn,2(q2; (1 - 1)4 eq 2 

differ in sign. Since Pn12(q2; p,u A*pl + B*) is of the same form as (3.2) but with 
different values for oa, B, y, 6, and since Theorem 2.1 again establishes continuity, there 
is some point (; 1 ,u 2) on the line segment for which Pn 2(q2; ip 1 

Xi2) - e 0. 
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This completes the proof except for the special case where the line connecting the two 
points is vertical. It is easily seen that the same general arguments hold in that 

situation. 
COROLLARY 3.1. Given ql and q2, the ,uA and ,u2 of Theorem 3.1 are unique. 
Proof This can be seen by solving for ,u 1 and A2 in terms of eq 1 and eq2, using 

the equalities given in Theorem 3.1. 

4. Applications. The purpose of this section is to briefly illustrate several areas 

where exponential approximations of the form considered in this paper occur or could 

be employed. 
As a first example, consider the method given by 

k 

(4.1) E a1hiy$,) + (- i)i+lfhiyhy() 1 = 0. 
i=O 

If ao =0 = 1; 

(1 - ,u1 - ,u2) (2k - 2 - i)! (k - 2)! ,ul(2k - I - i)! (k - 1)! 
i (2k - 2)! i! (k - 2 - i)! (2k - 1)! i! (k - I - i)! 

112(2k - i)! k! 

(2k)! i! (k-i)! ' 

= 11(k)! ii2(k- 1)! k! 92 W! 

akl (2k - 1)! (2k)! (k - I)! ak (2k)! 

(i- 1 - S12) (2k - 2 - i)! k! ? 1(2k - I - i)! k! 

pi (2k - 2)! i! (k - i)! (2k - I1)! i! (k - i)! 

p2(2k - i)!k! 

(2k)! i! (k?-i) i 1, 2, k, 

it can be shown that'the resulting method is, in general, of order 2k - 2, although 

particular values of u, and /12 produce orders of 2k - 1 and 2k. For examples of 

these latter cases, see [7] and [6]. It is easily established that solving (1.2) with (4.1) 
using the specified coefficients gives 

(4.2) Yn+l Pk,2(Xh; h1 112)Yn. 

From the results of Sections 2 and 3, we see that it is therefore possible to pro- 
duce arbitrarily high-order A-stable methods which exponentially fit at two points. 

Next, consider the class of generalized Runge-Kutta methods proposed by Lawson 
[12] and Lawson and Ehle [13]. In these methods and also in the corresponding 
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generalized Adams methods given by Jain [10], an explicit A- or L-acceptable exponen- 
tial approximation is employed. The class of approximations considered in this paper 
could be employed with all these methods. 

As another example, consider the two-parameter implicit Runge-Kutta method 

given by 

Yn?l =Yn + (h/2)[K1 + K2], 

(4.3) K1 = f(xn + (?2 - oa)h, Yn + h[f1 lKl + ?12K2]) 

K2 = f(xn + (1/2 + oa)h, Yn + h[ 321K, + ?22K21 

where 

01 1 = 022 = + Al- + 92(--)X 

13 U 2 2?bLi(6)?bL2( 3) 

012 = - ? -L2 
21= 2+13 6 +24 6) 

021 =2 + 1 ( + + 92 4 

and a = ? + (- ? /3/6) (ju1 + AL2). 

It is easily verified that this method satisfies conditions B(2), C(1), and D(1) of 

Butcher [2] and hence, by Theorem 7 of [2], the method is at least of order 2 for 

all p, and ,U2. In addition, if p, + ?2 = 1 # U2 0 1, then B(3) is true. (Actually, 
B(4) is true, but we use only the fact that B(3) is therefore true.) Employing 
Theorem 7 of [2], we see the method is then of order 3. Finally, if ,2 = 1, 1 = 0, 

we obtain Butcher's unique fourth-order method. 

Solving (1.2) with (4.3), it can also be verified that we obtain (4.2) with k = 2. 

Based on this result and the order and stability properties of certain classes of implicit 
Runge-Kutta methods studied in [2], [3], [6] and [8], it is reasonable to conjecture 
that, for all k > 2, there are two-parameter implicit Runge-Kutta methods which 

reduce to Pk,2G\h; Al, 1 2) and thus could be used for double exponential fitting. 
Finally, consider the 2-block one step method as proposed in Watts and Shampine 

[14] 

Yn+ 1 F 

Lyn+2 J 

(4.4) 4 L '3:- 2d )( + d Vyn +i 
? 

[d}& l[ 

(2 - 2d2) d2 A.f(Yn + 2)k0, d2 2 l 

n =2k, k =0, 1, 2,.. 
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where 

3 7 4 4 
di =4+ Al +6- 2' d2 = 1 + - 

I-L +3 -2- 

Applying (4.4) to solve (1.2), we get, by using Cramer's rule, 

(4.5) Yn + 2 = P2,2 (2h; Al, 92)Yn - 

In the special cases when ", = 3/4 and 12 = 0, we have the second-order method 

described in [1], while for p1 = 0, '2 = 1, (4.4) is the fourth-order Newton-Cotes 
method studied in [14]. Since 0 ? A1i,2 < 1 and p 1 + "2 < 1 in both cases, the 

corresponding methods are A-stable. 

Appendix. In this Appendix, we summarize several of the known properties of 
the Pade approximations to the exponential and establish some new ones which are 
used to prove our main results. In particular, it is known [9] that the numerator 
and denominator of (1.4) satisfy 

k (j?k -m)! k! r 

Ni,k (z) = 
:z 

m= ( + k)! m! (k m)! 

(A. 1) 
"(f?+k -m)! j! 

Dj k(z) = L (1? k)! m! ( - in)! ( 

Using Eqs. (A.1), the following properties of Nj k(z) and Dj k(Z), previously given in 
[5] and [7], are easily verified. Explicit dependence of functions on z is not shown 
unless necessary for clarity. 

(A) Nj k(iy) = Dkj (iy) and Dj k(iy) = Nkj (iy), y real. 

(B) For all j, k > 1 and all z 

Iz 
D,k =Dik1 

? 
+ k) ( + k- 1) D-1,k-1 

Ni, ~~~~kz N 
Nk =Ni-l,k + k) (? + k- 1) N-1,k- 1 

(C) For all j, k > 1 and all z 

z z 
NYi 1k\i~-N D1k- D.k= -i j-1k1 -1,k -Nj?k-l j + k - 1 j-1k + k - 1-?k- 

(D) For all n > 2 and all z 

z2 
Nn,n =Nn-l,n-1 + 

4(2n - 1) (2n - 3) n-2,n-2 
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z2 

n,n =Dn-1,1 ? 
4(2n- 1) (2n - 3) n-2,n-2 

(E) For all j, k > 1 and all z 

(i + k)Nj,k =iNjil,k + kNj,k1, (+ k)Dj, k = D-l ,k + kDj, k- - 

The following less obvious results are also established in [5]. 
LEMMA A.1. For all n > 1 and all z 

- Nn,nDn- 11)nz [(n - )! 
zn-1 

2 

Dn nN_lXnl -NJnDnlXn- (2n - 1) (2n - 2)! 

LEMMA A.2. For all n > 0 and y real 

iDn+ 1,n(iy)2 -Wn+1 n(iY)12= [n!yn +/(2n + 1)!]2 

and 

IDn + 2,n (iy)12 - INn + 2n (iy)12 [n y!n + 2/(2n + 2) !] 2. 

The following two results are found in [7]. 

LEMMA A.3. For all n > 2 and all z 

Dn,n-2 n-l ,n- n,n-2 n-l ,n + n,n-lNn-2,n -Nn,n-,Dn-2,n 

I()n 2(2n 1)) F(n 1)z 2 

(n-i1) L(2n -1)!J 

LEMMA A.4. For all n > 1 and all z 

Dn n-lNn n-Nn,n-lDn,n + DnnNn-l,n n-N nDn-l,n 

= (- I)n [(n -1!zn 1(2n -1!2. 

LEMMA A.5. For all n > 2 and all z 

Dn,n-2Nn,n Nn,n-2Dn,n + Dn,nNn-2n -Nn nDn-2,n 

= I_ )n (n -1) r(n - 2)! zn 2 

(2n -1) (2n- 2)! 

Proof The result follows from property (C) and Lemma A.1. 

LEMMA A.6. For all n > 2 and all z 
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-z 
D N -Nn,-, 

= [DNa1n1? D~ , 
Dn,n-1 n,n n n-ln, n =2(2n -1) [n,nNn-l ,n-1 +~ Nn,n n-l ,n-1 

and 

Dn,n2N -N 2D 

=2(n -1) [Dn,nNn-1,n1 -4 ?Nn,nDn-i,n -1 

+ 2n(- I)n-1 (n -i)! n-ln 2 

2n -1 L(2n - 2)! 

Proof The first equality follows from property (B). 

The second equality can be obtained by application of property (E) and then 
property (B) and Lemma A.1. 

LEMMA A.7. For all n > 2 and all z 

z2 
Dn, nNn_ =DnDn-1n-Nn-1,n-1 + 

4(2n- 1) (2n - 3) Dn2n2Nnln1 

and 

2 

z 4 
+ Dn-2,n-2Nn-2,n-2(n 

16(2n - 1)2 (2n - 3)2 

Proof Both results follow from property (D). 

THEOREM A. 1. For all n > 0 the even-powered terms of Dn + 1 ,n + 1 (z)Nn n(z) 

and Dn,n(Z)An, n(z), denoted En + 1, n(z) and Enn(Z) respectively, are 

E 2(n!) (n +1)! (2n - 2j)! (2n -j + 1)! (-1) 2i 
(2n)! (2n + 2)! j_0 (n -j)! (n -)!' Z! 

(A.2) = n?l 2 n (2n - 2j)! (2n -j)! ( 1)j92. 

Enn 
(z) 

= 

[2n! 

] ? 
(2n - j)! (2n -j)- j _! 

)z2 

Proof. It is trivial to establish that En+ 1 n(z) and En n(z) are correct for n = 

0, 1. Assuming that, for some k > 2, the formulas given by Eqs. (A.2) for Ek-2,k-2' 

Ek-1 ,k-1I and Ek-1 k-2 are correct, it is possible to show that the formulas for 

Ek k and Ek, k-1 as given by Eqs. (A.2) are also correct. This is done by observing 
that Lemma A.7 implies that 
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Ek,k-1 Ek-l,k-1 + 
4(2k - 1) (2k - 3) Ek-l,k-2' 

Ek,k =Ek,kl1+42 ?z(2k - 35 k-l,k-2 ? Ek4 k2? ksk ks 1 4(2k - 1) (2k-3) k l ,k 216(2k - 1)2 (2k -- 3)2 k-2kX 

since the even-powered terms of Dn-2,n-2Nn_1,n-1 and Dn-1,n-1Nn-2,n-2 are the 

same. Thus, the proof is completed by induction. 
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